

LASER SHOCK PEENING: IMPROVEMENT **OF MATERIALS MECHANICAL PROPERTIES**

Laser induced shock waves cause localized plastic deformation to generate compressive residual stresses and strain hardening.

Benefits

- · Improves fatigue and corrosion resistance
- · Prevents high-cost failures
- · Reduces downtime of machinery
- Eco-friendly process
- · Allows lightweighting

Materials

- Aluminium alloys
- · Structural and alloy steels
- Titanium alloys
- Nickel alloys

Laser Systems and Equipment

- · High intensity nanosecond laser system (10 ns, 10 J, 10 Hz @ 1030 nm)
- · Square, top-hat laser beam profile
- · Robotic arm for easy component manipulation
- Loading capacity up to 20 kg

HiLASE Services

- · Evaluation of LSP suitability for your product
- Preliminary process development
- · Generation and analysis of compressive residual stresses on your samples
- · LSP Implementation into your production

Surface Conditions

- Cold working process
- Average post-treatment surface roughness (Ra) < 3 µm
- · Laser induced strain hardening

Performance

Up to 10 times improved fatigue resistance	 Image: A second s
Depth of compressive residual stresses up to 2 mm	\checkmark
Treatment of hard-to-reach areas	 Image: A second s
Reduction of tensile stresses and microstructure enhancement of 3D printed parts	1

HiLASE Centre · Institute of Physics of the ASCR, v.v.i. · Za Radnicí 828, CZ-25241 Dolní Břežany 🕿 solutions@hilase.cz · in hilase-centre · 🥒 (+420) 314 007 718 / 314 007 710 · 🐼 www.hilase.cz

- Monitoring and optimization of laser parameters Stable laser performance
- resulting in high reproducibility

Precise control over laser impact pattern

Areas of Application

BIOMED & PHARMA

MARITIME

his project has received funding from he European Union's Horizon 2020 research and innovation programme No 739573 (HiLASE CoE)

JROPEAN UNION uropean Structural and Invi stment Funds

