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Abstract: We review the progress in the investigation of the Verdet constant of new magneto-active
materials for the Faraday-effect-based devices used in high-power laser systems. A practical methodology
for advanced characterization of the Verdet constant of these materials is presented, providing a useful
tool for benchmarking the new materials. The experimental setup used for the characterization is
a flexible and robust tool for evaluating the Faraday rotation angle induced in the magneto-active
material, from which the Verdet constant is calculated based on the knowledge of the magnetic field and
the material sample parameters. A general model for describing the measured Verdet constant data as
a function of wavelength and temperature is given. In the final part of this review, we present a brief
overview of several magneto-active materials, which have been to-date reported as promising candidates
for utilization in the Faraday devices. This overview covers room-temperature investigations of the
Verdet constant of several materials, which could be used for the ultraviolet, visible, near-infrared and
mid-infrared wavelengths.

Keywords: Verdet constant; magneto-active materials; Faraday devices; magneto-optical properties;
thermal effects; high-power laser; Faraday effect; circular birefringence

1. Introduction

1.1. Faraday Effect and Its Applications

The Faraday effect (or magnetic circular birefringence) is one of the fundamental magneto-optical
phenomena emerging from the interaction of light and matter subjected to a magnetic field. This effect
manifests itself in the magnetized medium as a circular anisotropy, which is an outcome of the longitudinal
Zeeman effect–splitting of the ground and excited states of the medium in the magnetic field [1].
A linearly polarized light beam (which may be represented as a superposition of the right-hand(+)
and the left-hand(−) circularly polarized waves with a definite phase difference) undergoes rotation of the
polarization plane as it propagates through the medium because of the different propagation velocities of
the +/− waves. This phenomenon may be conveniently described by assuming a ray coordinate system
(x′, y′, z′) travelling along the ray’s path L in the medium, with the unit vector z′0 in the direction of ray
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propagation. Considering linear (far from saturation) Faraday effect, the rotation angle distribution over
the beam’s cross-section may be described using the following expression

θ(x′, y′) =
∫
L

V
[
λ, T(x′, y′, z′)

]
B(x′, y′, z′) · z′0 dL , (1)

where B(x′, y′, z′) is the magnetic field, B · z′0 denotes the dot product of B and z′0 vectors and V is the
Verdet constant, a material parameter depending on wavelength λ and temperature T. The sign of the
rotation angle is determined by the projection of the magnetic field into the beam’s propagation direction
and by the sign of the Verdet constant. According to the convention, the Verdet constant is considered
negative if the medium rotates the polarization clockwise and if the laser beam propagation is parallel
to the magnetic field. By assuming constant temperature, constant magnetic field parallel to the beam of
monochromatic light, Equation (1) simplifies into the familiar expression θ = VBL, where L is the distance
travelled in the medium.

There are vast possibilities for utilization of the Faraday rotation in technological and scientific
applications. For instance, it can be used for magneto-optical devices for polarization-manipulation-based
processing of an optical signal (e.g., modulators, switches, rotators or optical isolators [1–5]),
magneto-optical current sensors [6], gravitational wave detection experiments [7] or magnetic splitting of
ultrashort laser pulses in plasmas [8]. Within this broad scientific community dealing with the development
of the Faraday devices (FDs), a great effort is dedicated to the investigation of the FDs for high-power laser
systems. The high-power lasers have made several remarkable advancements in the recent years [9–11],
leading to highly demanding criteria on new architectures, materials, and other related laser technologies.
The FDs are used in the laser systems particularly for the multi-pass amplification and regenerative
amplifiers as well as for optical isolation of one part of the system from another by eliminating possible
harmful back-reflections. This makes the FDs indispensable components of any high-power laser system.

1.2. Thermal Effects in High-Power Faraday Devices

One of the main factors limiting the performance of the laser components are the thermal effects arising
due to the always-present absorption of a small portion of the incident laser power [9,12–14]. Among all
of the components of a laser system, the FDs are particularly affected: the absorption of the vast majority
of the magneto-active media is much higher (∼10−3 cm−1) than that of the common optical elements.
A full description of the physical phenomena involved in the heating of magneto-active medium and their
impact on the FD performance is a very complex topic. There are, however, several sources in the available
literature dealing with the detailed description [15,16]. Within the scope of this review, we consider only
a simplified cause-and-effect diagram of the physical phenomena involved in the absorption-induced
thermal effects in magneto-active media (see Figure 1). When a magneto-active medium is exposed to
high power laser radiation, a nonuniform temperature distribution is generated as a result of absorption
and nonuniform cooling of the medium. This nonuniformity in the temperature results in a nonuniform
distribution of the polarization-plane rotation angle over the cross-section in Equation (1) (polarization
distortions) due to the temperature dependence of the Verdet constant, as well as due to the induced
nonuniform polarization state changes, because of the thermal-stress-induced birefringence (via the
photo-elastic effect). Consequently, the performance of a FD strongly deteriorates. As an example, we may
mention the case of a Faraday isolator, in which the polarization distortions decrease the isolation ratio,
leading to output power losses in the permeable direction, backward power leakage in the opaque
direction, and to a beam quality degradation. Furthermore, the nonuniform temperature distribution leads
to the thermal lensing, due to the thermal bulging and changes in the refractive index, causing wavefront
distortions of the passing laser beam.
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Figure 1. A simplified scheme of the physical phenomena involved in the absorption-induced thermal
effects in magneto-active media.

1.3. Methods for the Thermal Effects Compensation or Reduction

Many techniques and methods for a partial reduction or compensation of the arising thermal effects
have been reported in recent years. To satisfy the high demands on the high-power FDs, it is essential
to take into consideration an appropriate optical layout for compensation of the thermally-induced
polarization and wavefront distortions [17–20]. The needed length L for achieving the desired rotation
angle θ by a magneto-optical element (MOE) may be reduced by enhancement of the applied magnetic
field [21–26]. This leads to a reduced amount of generated heat as well as to a reduced optical path travelled
through a distorted medium. Another aspect which needs to be taken into account is the optimal design of
the geometry and cooling of the MOE [27–29]. One possibility is to consider the cryogenic cooling [30–32],
which, on the one hand, greatly enhances both Verdet constant and thermal properties of the medium,
but, on the other hand, increases the cost and technological complexity of the FD and makes the system
more sensitive to temperature fluctuations.

The degrading impact of the thermal effects may be substantially reduced by a careful choice of the
magneto-active material used as a magneto-optical element in the FD. The common materials used for
the laser FDs incorporate solid-state crystals, transparent ceramics or glass [33,34]. Possession of a high
Verdet constant and transparency at the desired wavelength are the fundamental criteria for selection of
a magneto-active material as a highly promising for utilization in FDs. Historically, for the purpose of
comparison between the magneto-active materials, a parameter called a magneto-optical figure of merit
(FOM) was introduced as a ratio between the Verdet constant and absorption – V/α. However, in the
context of the high-power FDs, it is more convenient to include the material thermal properties for more
accurate benchmarking. The “extended” FOM may have the following forms [16]
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µQ =

∣∣∣∣Vk
αQ

∣∣∣∣ (|ξ| ≥ 1) , (2)

µQ,ξ =

∣∣∣∣ Vk
αQξ

∣∣∣∣ (|ξ| < 1) , (3)

µP =

∣∣∣∣Vk
αP

∣∣∣∣ , (4)

where k denotes the thermal conductivity; Q and P are the so-called thermo-optical constants evaluating the
polarization and wavefront distortions, respectfully; and ξ is the optical anisotropy parameter. Media with
a negative parameter of optical anisotropy allow compensating the thermally-induced depolarization
without using a reciprocal rotator in the optically-compensating layout [35–38]. The Q, P, ξ parameters are
dependent on a large set of material parameters incorporating optical, thermo-optical, thermo-mechanical
and elasto-optical properties [16–18]. However, it was reported multiple times, how these constants may
be evaluated indirectly using different measurement methods (see, e.g., [39–43]).

Within the scope of this manuscript, we cover in detail:

• A method for simultaneous characterization of the Verdet constant wavelength and
temperature dependence.

• A brief summary of the reported room-temperature investigations of the Verdet constant for several
magneto-active materials suitable for the high-power FDs.

The measurement of the Verdet constant dispersion V(λ) at room temperature usually represents
an initial step in the benchmarking process of new magneto-active materials by the FOM parameters in
Equations (2)–(4). The knowledge of the temperature dependence of the Verdet constant is useful for the
investigation of the FDs performance under thermal loading by a high-power laser. Therefore, an advanced
method for the characterization of the Verdet constant temperature-wavelength dependence represents
a very important tool for the scientific community devoted to the development of the high-power FDs.
In the final section, we review the results of the room-temperature investigations of the Verdet constant of
several yet-reported magneto-active materials for FDs. A similar review was given already in Ref. [33],
which is, however, relatively out-dated. A comparison of several magneto-active media employed in
various Faraday isolator devices was given in Refs. [15,16]. The main goal of this paper is to update
the available reviews and to provide the needed summary of several recently reported Verdet constant
investigations of magneto-active materials developed for the high-power FDs operating from the ultraviolet
to mid-infrared wavelengths. The material summary will be useful for further evaluation of the FOM
parameters of the covered materials, for additional high-power testing, for construction of real devices as
well as for giving directions in the future research of the magneto-active materials for high-power FDs.

2. Characterization of the Verdet Constant as a Function of Wavelength and Temperature

This review presents the characterization method based upon a modified version of the
polarization-stepping technique [44], which has been systematically developed in the recent years [45–48].
One of the main advantages of this method is that the rotation angle induced in the examined
material sample is analyzed based on a large number of angular positions (typically a few hundred)
of the analyzing polarization-sensitive element of the experimental detection system. This makes the
method more robust, i.e., less sensitive to the fluctuations of the detected signal, as compared with
the other commonly used characterization methods, which usually rely only on a smaller number of
steps/measurements [33,44,49,50]. Further, the presented method takes advantage of the utilization of
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a broadband radiation source as a probe beam, allowing an advanced analysis of the Verdet constant
wavelength dependence based on a larger number of detected values distributed across the investigated
spectral range. When using a broadband source, the presence of the material resonance regions is more
easily detected and it is possible to study their impact on the examined Verdet constant dispersion.

The main drawback of the method then lies within the time demanding data analysis, as compared
with the methods which rely only on a smaller number of measurements. From these techniques, which
benefit from a relatively simple and quick measurement, we may mention the procedure in which the
examined material sample is put between the crossed polarizers and then, after applying the magnetic field,
the induced Faraday rotation angle is detected by finding the new mutual polarizers’ angular position
ensuring the maximal extinction of the detected signal. This procedure or its variations has been frequently
reported in several Verdet constant investigation studies (see, e.g., [49–51]).

Another drawback of the method discussed here is that it is not suitable for investigation of the
Faraday effect in the media with a non-negligible co-occurrence of the other phenomena altering the
polarization state of the probe beam (e.g., the linear birefringence). In such cases, it is advantageous to
use more general ellipsometric methods allowing to filter the parasitic influences of the other phenomena.
A suitable procedure for such cases was described, for instance, by Majeed et al. [52].

2.1. Experimental Setup for the Characterization

A simplified scheme of the experimental setup used for the characterization of the Verdet constant
is depicted in Figure 2. In the experiment, a probe beam from the broadband radiation source is linearly
polarized by an input high-contrast Glan polarizer (P1) and propagates through the measured material
sample, which is thermally coupled to a cryostat ledge. An external magnetic field is applied on the
sample, inducing a Faraday rotation of the propagating probe beam. The beam then enters the detection
system, which may be realized in different configurations, as depicted in Figure 2. The reason for
consideration of different detection systems is the following: the transmission ranges of the employed
optical elements and the wavelengths provided by the utilized broadband source will eventually limit
the effective spectral range of the measurement. The first depicted configuration for the detection system
consists of another Glan polarizer (an analyzer), which could be arbitrarily rotated around the optical
axis and a diffuser. The latter may be either transmissive or reflective and its purpose is to suppress
the polarization dependence of the fiber couplings delivering the optical signal to the spectrometers.
This configuration was used in the investigations in Refs. [45–47], and its main advantage is the relative
simplicity of the setup, compared with the other configurations. Furthermore, assuming we measure the
Verdet constant on a single wavelength only (we use a laser probe beam except the broadband source),
the spectrometers may be exchanged with a power meter, which even more simplifies the measurement
and data analysis. The other depicted configurations take advantage of using an arbitrarily rotated
achromatic wave plate, half (No. 2) or quarter-wave plate (No. 3) or of an arbitrarily rotated polarizer
(No. 4) in a combination with a static analyser. The latter three configurations practically cancel the
problem of the polarization-sensitive fiber couplings and allow to construct different spectral ranges of
the measurement, based on the availability of the listed components. The configuration with the rotating
half-wave plate was quite recently demonstrated [48] (a 3D overview of the experimental setup is depicted
in Figure 3a), with the effective range of the measurement covering visible, near-infrared and mid-infrared
wavelengths. The other configurations are planned to be investigated in the near future.



Appl. Sci. 2019, 9, 3160 6 of 21

Broadband source

P1

Iris Iris

Figure 2. Experimental setup for the Verdet constant characterization.
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Figure 3. Experimental setup for the Verdet constant characterization, detection system with an arbitrarily
rotated half-wave plate [48]: (a) a 3D overview of the experimental setup; and (b) an example of data
obtained at a single wavelength and temperature.

Regardless of the what type of detection system is used, the measurement is taken twice (at each of the
measured temperatures), i.e., with and without applying the magnetic field. The spectra are gathered in a
large number of angular steps of the rotating element of the detection system, making the measurement
more robust, as compared with taking only three angular steps in the original method [44]. According
to the Jones calculus, the detected intensity data need to be proportional to the angular position α of the
rotating element of the depicted detection systems (Nos. 1–4) as follows

I1(α, λi, Tj) ∝ cos2 [α + θ(λi, Tj)− α0
]

, (5)

I2(α, λi, Tj) ∝ cos2 [2α + θ(λi, Tj)− α0
]

, (6)

I3(α, λi, Tj) ∝
1
2

cos2(α0) +
1
2

cos2 [2α + θ(λi, Tj)− α0
]

, (7)

I4(α, λi, Tj) ∝ cos2(α− α0) cos2 [α + θ(λi, Tj)− α0
]

, (8)

where I1−4(α, λi, Tj) denotes the measured intensity data gathered at each of the detectable wavelengths
λi and temperatures Tj. α0 corresponds to the initial mutual angular position of the input polarizer
and the rotating element in the detection system. θ(λi, Tj) represents the induced polarization rotation
angle, which occurs only in the measurement with the magnetic field, and, hence, it may be easily
calculated as a subtraction of the respective fitting parameters values (the initial phase shifts) obtained
for the measurement with the magnetic field from the values obtained for the measurement without
it. Example data are shown in Figure 3b obtained at a single wavelength and temperature for the
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I2-configuration [48]. The Verdet constant data V(λi, Tj) are calculated from the rotation angles θ(λi, Tj)

using the expression V(λi, Tj) = θ(λi, Tj)/(BeffL). The effective value of the magnetic field is obtained by
a numeric integration of the known longitudinal distribution B(z) of the axial magnetic field magnitude
over the length L of the sample. It is assumed that the sample is placed in the maximum of the magnetic
field, i.e., Beff =

∫ L/2
−L/2 B(z)dz (the maximum is located at z = 0).

Using a standard error calculus, the uncertainty of the obtained Verdet constant data uV(λi, Tj) is
given by

uV(λi, Tj) =
1

BeffL

√
uθ(λi, Tj)2 +

(
θ(λi, Tj)

Beff

)2

u2
Beff

+

(
θ(λi, Tj)

L

)2

u2
L . (9)

uθ(λi, Tj) is the uncertainty of the obtained rotation angles θ(λi, Tj), caused by small deviations of
the intensity data from the cosine-squared functions in Equations (5)–(8). uBeff represents the uncertainty
of the effective magnetic field value given by both measurement error of the magnetic field longitudinal
distribution as well as by an undesired displacement of the material sample from the maximum of the
magnetic field. uL is the uncertainty of the sample length L.

2.2. Model Function for the Verdet Constant Temperature-Wavelength Dependence

In the next step, after obtaining the Verdet constant data V(λi, Tj), we need to find a model function
for describing the Verdet constant temperature-wavelength dependence V(λ, T). A general model for the
Verdet constant may be written as follows [1,45,48,53–56]

V(λ, T) =
N

∑
k=1

[
Akλ3

0,kλ2

(λ2 − λ2
0,k)

2(T − Tw)
+

Bkλ2
0,k

λ2 − λ2
0,k

+
Ckλ2

0,k

(λ2 − λ2
0,k)(T − Tw)

]
+

D
T − Tw

. (10)

The model was derived for solid-state compounds containing rare-earth paramagnetic ions, assuming
that: (a) the described spectral range is sufficiently far from any resonance line; and (b) only the contribution
of N dominant transitions at wavelengths λ0,k(k = 1 . . . N) are considered. It consists of four different
contributions (associated with the Ak, Bk, Ck and D-terms), arising from various phenomena associated
with the Zeeman splitting of the ground and excited states of a material subjected to a magnetic field. A full
description of these individual contributions is beyond the scope of this paper, however, a brief explanation
of the individual terms is given with the corresponding references to additional literature. The Ak-terms
refers to the so-called diamagnetic contributions of the material lattice. This contribution, as well as its
mathematical formulation, is discussed in Refs. [1,53,55]. The second bracketed Bk-terms stand for the
mixing term derived by Van Vleck and Hebb based on quantum mechanical considerations [1,54,55].
This contribution comes from the overlap of wavefunctions of ground and neighboring excited states
which causes the perturbation of the amplitude elements of the electric moment by the magnetic field.
The next terms, proportional to Ck, are the paramagnetic terms, arising from the different occupation of
energy sublevels of the magneto-active ion ground states [1,55]. The D-term is called the gyromagnetic
contribution, which is the only wavelength-independent term of the model [1,55]. The origin of this
contribution is associated with the magnetic dipole transitions. The influence of this contribution
becomes more prominent at longer wavelengths. All contributions except for the mixing terms are
temperature-dependent according to the Curie–Weiss law, i.e., ∝ 1/(T − Tw), for the temperatures above
the magnetic state phase transition characterized by the Néel temperature [57]. It should be noted that
the diamagnetic contributions are often referred as temperature-independent, which is, however, a valid
assumption only for higher temperatures (e.g., around the room temperature) or for a narrow range
of temperatures.
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The model in Equation (10) may be easily transformed into a single-variable function of either
wavelength (for a fixed temperature Tf ) or temperature (at a given wavelength λ f ) to get

V(λ) =
N

∑
k=1

Ek

(
Tf

)
λ3

0,kλ2(
λ2 − λ2

0,k

)2 +
Fk

(
Tf

)
λ2

0,k

λ2 − λ2
0,k

+ G
(

Tf

)
, (11)

V (T) =
H
(

λ f

)
T − Tw

+ I
(

λ f

)
. (12)

When performing a full temperature-wavelength analysis of the Verdet constant, it is often
advantageous to fit the data first with the single-variable functions in Equations (11) and (12) to obtain
initial estimations of the fitting parameters (Ak, Bk, Ck, D) of the general model in Equation (10).
Note that the model in Equation (10) may be considerably simplified. For instance, the contribution of the
diamagnetic terms is usually very weak compared to the paramagnetic and mixing terms if the described
spectral region is sufficiently far from any resonance line. Therefore, the diamagnetic contributions may be
neglected in these cases. Furthermore, assuming that only one dominant transition is contributing to the
Verdet constant, together with neglecting the diamagnetic term and considering the temperature is fixed,
Equation (10) will reduce to the widely-used single-transition model

V(λ) =
Fλ2

0
λ2 − λ2

0
+ G . (13)

Equation (13) is used in the vast majority of the reported Verdet constant investigations at room
temperature since the needed criteria for its use are usually very well met (e.g., [41,46,58–60]). However,
when the investigated spectral range contains additional resonance lines, they should be included in the
model function, especially when the resonance strongly affect the overall Verdet constant dependence.
Careful analysis of the measured data, as well as knowledge of the spectroscopic characteristics of the
investigated compound, may provide valuable insight into the considerations about the selection of the
lines which need to be taken into account [48].

3. Verdet Constant Investigations of Magneto-Active Materials Developed for High-Power
Faraday Devices

In this section, a brief overview of the reported Verdet constant investigations at the room temperature
is given. The overview is divided into three subsections, corresponding to different spectral regions: (1) UV
region (λ < 400 nm); (2) VIS-NIR region (400 < λ < 1100 nm); and (3) NIR-MIR region (λ > 1100 nm).
This allows us to discuss the current status and possible future development of the covered materials more
conveniently. In each of the subsections, the historical development of the reported materials is briefly
discussed along with a table providing:

• Fitting parameters (F, G, λ0) of the single-transition model in Equation (13), which could be used for
the description of the listed materials’ Verdet constant wavelength dependence within the discussed
spectral region.

• Values of the Verdet constant at two wavelengths selected from the spectral region.
• Additional references leading to further investigations of the parameters related to the high-power

benchmarking (e.g., Verdet constant temperature dependence, Q and P constants, optical anisotropy
parameter, thermal properties or LIDT tests) or to studies dealing with the optimization of the
fabrication process of the listed materials.
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The following Tables 1–3 list only the absolute values of the Verdet constant to make the comparison
of the listed materials more convenient.

3.1. UV Region (λ < 400 nm)

The historical development of magneto-active materials for the UV region has already been very well
summarized in Refs. [59,61]. The very first investigations were performed on the commonly used solids
and liquids (e.g., quartz, water, etc.), which, however, exhibit only very small values of the Verdet constant
because of their diamagnetic character. The following research was therefore focused more on various
materials containing rare-earth (RE) paramagnetic ions, which were reported to have high magneto-optical
characteristics [62–65]. In this manner, several RE-containing glasses were investigated as possible
magneto-active materials for the UV FDs, with the cut-off wavelengths equal to ∼200–300 nm [66–68].
It was observed that the Verdet constant in these glasses is directly proportional to the concentration of
the RE ions. Unfortunately, the increase in the concentration (and the Verdet constant) was found to be
constricted by the composition of the glass and, furthermore, it is counterbalanced by increased absorption
losses [67,69]. Phosphates (KDP, DKDP, ADP, etc.) and arsenates (ADA, KDA or DKDA) were studied as
possible material candidates for deeper UV (λ < 200 nm) [70,71]. Nevertheless, these compounds exhibit
serious drawbacks for their further utilization in the FDs because they are relatively soft and hygroscopic.
The focus of attention was then switched to fluoride crystals, which were already studied in Refs. [72–74],
but more comprehensively, with a focus on the UV region, in Refs. [59,61]. In the latter, magneto-optical
characteristics of CeF3, PrF3 [61] and of LiREF4 (RE = Tb, Dy, Ho, Er and Yb) [59] crystals were reported
and studied in detail. The conclusion is that these fluorides exhibit high Verdet constant values and low
absorption in the UV (inside their local transmission windows), with the cut-off wavelengths >158 nm.
To the best of our knowledge, only the CeF3 crystal has been more extensively studied in the following
years. These investigations were focused mainly on the magneto-optical characteristics of the CeF3 in the
VIS-NIR region, which we discuss in the following subsection. The reason is the higher FOM parameter
of CeF3 as compared to the most commonly used magneto-active material in the VIS-NIR—the terbium
gallium garnet crystal. A successful design and construction of CeF3-based UV Faraday isolators was
reported in Ref. [75].

Table 1. A brief overview of magneto-active materials for the UV FDs (λ < 400 nm). The Verdet
constant dispersion V(λ) is given by the single-transition model in Equation (13) with the specified
(F, λ0)-parameters; the G-parameter is equal to 0 for all materials. The listed V-values are the absolute
values of the Verdet constant, specified in rad/(Tm).

Material F [rad/(Tm)] λ0 [nm] |V | at 248 nm |V | at 308 nm Reference Additional References

CeF3 743.6 239 - 1146 [61] [73–75]
PrF3 1357.7 184 1658 752 [61] [73,74]

LiTbF4 1190.6 198 2101 840 [59] [72,76]
LiDyF4 1530.9 156 1002 528 [59] -
LiHoF4 3815.0 87 536 331 [59] -
LiErF4 1700.0 93 279 171 [59] -
LiYbF4 58.0 163 44 23 [59] -

Pr2O3-doped oxide glass - - 1538 - [66] -
Dy2O3-doped oxide glass - - 782 - [66] -
Pr-doped phosphate glass - - - 311 [69] -

Dy-doped alumino-borate glass - - - 489 [69] -
KDP - - 31 18 [71] [70]

DKDP - - 36 21 [71] [70]
ADP - - 32 19 [71] [70]
KDA - - 61 35 [71] [70]

DKDA - - 71 39 [71] [70]
ADA - - 71 38 [71] [70]
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3.2. VIS-NIR Region (400 < λ < 1100 nm)

For the specified VIS-NIR region, terbium gallium garnet (TGG) crystal represents the most
commonly used magneto-active material used in the FDs. One of the first investigations of this
material dates back to 1970s, in which the TGG was proved to have higher Verdet constant [77] and
higher thermal conductivity [78] than the often used Tb-doped magneto-optical glasses. Properties
of the TGG crystal and its performance in the Faraday devices have been later investigated in
many papers (e.g., in [17,18,49,56,79,80]). However, the TGG crystal exhibits two major disadvantages:
(a) its use in the VIS region is struggling with increasing absorption losses towards the shorter
wavelengths [59,61]; and (b) growth of large-aperture TGG crystals is difficult and expensive [59,61,81,82].
Although the manufacturing process was greatly improved during the last decades, the largest aperture
TGG-crystal-based FD (to the best of our knowledge) was reported in 2015 by Mironov et al. [83], having a
40-mm clear aperture. For a larger-aperture FD, the magneto-active glasses still represent a viable option
for a non-repetitive high-power operation. Because of this advantage, the glass-based magneto-active
materials are still being actively developed [67–69,84–89]. More and more attention is being put into the
investigation of magneto-active transparent ceramics in the recent years [34].

A considerable amount of scientific effort has been put into the investigation of magneto-active
materials, which could supersede the TGG crystal in the thermo-optical or magneto-optical characteristics
or in the large-aperture scalability. One of the materials, which has been frequently co-investigated along
with the TGG crystal ever since the 1960s, is the terbium aluminium garnet (TAG) crystal [56,63]. The main
advantage of TAG is its ∼30% higher Verdet constant [56,90] and >50% higher thermal conductivity [91]
as compared with the TGG. Nevertheless, TAG crystals are difficult to grow in dimensions suitable
for practical applications because of their incongruent melting properties [90,92]. The solution to this
drawback has brought the development of the transparent ceramics technology, which enabled production
of TAG in the form of ceramics [93]. A distinct enhancement of the magneto-optical properties of the TAG
ceramics has been obtained by doping with: Ce [94–97], Si [98], Ti [98,99], Ho [100], Pr [101], Tm [102] or
Tb4O7 [103,104]. A TGG transparent ceramics [105], with the properties similar to those of the <111>-cut
of the single crystal [45,106], has been also successfully manufactured and investigated in detail in the
recent years [29,51,58,107–110]. The largest piece of the TGG ceramics, a 100 mm × 100 mm slab, was
reported in [111], greatly overcoming the manufacturing limits of the TGG crystal. Another material, which
could be used as an advantageous alternative to the TGG crystal, is the terbium scandium aluminium
crystal (TSAG) [112,113], which possesses ∼25% higher Verdet constant [114,115], lower thermo-optical
constant Q and negative optical anisotropy parameter [41]. All of these properties ensure that the TSAG
scores much higher in the FOM parameter than TGG, which has marked this material as one of the
prime candidates of several other scientific investigations [37,116–118]. The sodium terbium fluoride
(NTF) [50,119] and the potassium terbium fluoride (KTF) crystals [72,120,121] also deserve attention:
although they possess ∼20% lower Verdet constant, they exhibit a higher FOM parameter than the
TGG crystal. Notable characteristics were recently reported for the rare-earth (RE) sesquioxide ceramics
(RE2O3; RE = Tb [122–127], Dy [48,128–130] or Ho [47,131–133]), which possess high concentrations of the
magnetically-active RE3+ ions. Among these, Tb2O3 holds the record Verdet constant (∼3.5 times higher
than TGG), followed by the Dy2O3 (∼2 times higher (at 633 nm wavelength)) and Ho2O3 (∼1.4 times
higher (at 1064 nm wavelength)). The manufacturing process of the RE2O3-based ceramic materials still
needs to be optimized before the ceramics will be obtained in a high optical grade and in larger dimensions.
Nevertheless, these structures represent one of the most promising options for the large-aperture VIS-NIR
FDs. The fluorides mentioned in the UV region, i.e., LiREF4 [59], PrF3 and CeF3 [61] could be used as
Faraday rotators in the VIS region as well. The latter one, CeF3, has been extensively studied over the
VIS-NIR region (400 < λ < 1100 nm), since it exhibits higher FOM than TGG crystal [46,60,134,135].
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There are many more reports on promising magneto-active materials for the VIS-NIR region,
which offer properties superior to the TGG crystal, most of them targeting on the enhancement of the
Verdet constant. From the vast number of these materials, we may mention, e.g., NaTb(WO4)2 [136],
TSLAG [81,137], Na2Tb4(MoO4)7 [138], LiCaTb5(BO3)6 [139], RE:TGG (RE= Ce [140], Pr [141], Ho [142],
Tm [143] or Dy [144]), TbVO4 [145], Nd:TbVO4 [146], Na2Ce(MoO4)2 [147], TCZ [148,149], Tb2Hf2O7 [150]
or CeAlO3 [151].

Table 2. A brief overview of magneto-active materials for the VIS-NIR FDs (400 < λ < 1100 nm).
The Verdet constant dispersion V(λ) is given by the single-transition model in Equation (13) with the
specified (F, G, λ0)-parameters. The listed V-values are the absolute values of the Verdet constant, specified
in rad/(Tm). Some of the listed values were measured * at 600 nm, ** at 635 nm, *** at 1060 nm or **** at
1075 nm. ◦ A function different from the model in Equation (13) for the Verdet constant dispersion may be
found in the listed reference.

Material F, G [rad/(Tm)] λ0 [nm] |V | at 633 nm |V | at 1064 nm Reference Additional References

TGG 820.3, −6.2 239.3 130.6 37.5 [45] [17,18,29,49,51,56,58,77–80,105–111]
MOG04 glass -, - - - 21.3 *** [84] -
MOG10 glass -, - - - 25.6 *** [84] -

Zinc-tellurite glass -, - ◦ - 23.8 7.6 [89] -
TSAG 756.7, - 262 156.6 48.9 [115] [37,41,112–114,116–118]
TAG -, - - 172.7 ∼46.5 **** [93,96] [56,63,90–92]

Si or Ti:TAG 925, - 259 186 58.3 [98] [99]
Ce:TAG 907.6, - 272 205.5 63.5 [98] [94–97]
Pr:TAG -, - - 189.8 - [101] -
Ho:TAG -, - - 183 - [100] -
Tm:TAG -, - - 189.5 - [102] -

NTF -, - ◦ - 104.7 31.1 [50] [119]
KTF -, - - 112 33 [72] [72,120,121]

Tb2O3 1663.2, - 284.9 422 128 [124] [122,123,125–127]
Dy2O3 -, - ◦ - 347.6 135.3 [48] [128–130]
Ho2O3 1941.3, - 173 178 * 46.3 [131] [47,132,133]
CeF3 697, - 245 123 39 [46] [60,61,134,135]

NaTb(WO4)2 -, - - 155 52 [136] -
TSLAG 801.6, - 258.2 160 50.2 [81] [137]
Ce:TGG 803, - 256.2 157.3 53.2 [140] -
Ho:TGG -, - - 214.9 77.8 [142] -
Pr:TGG -, - - 200.1 68.7 [141] -
Dy:TGG -, - - 178.6 60.2 [144] -
Tm:TGG -, - - 178.6 60.2 [143] -

TCZ 320.1, - 301 174 48.5 **** [148] [149]
Tb2Hf2O7 716.1, - 270.5 160 50.4 [150] -

Na2Tb4(MoO4)7 -, - - 216 65 [138] -
NaCe(MoO4)2 -, - - 203.8 ** 63.8 [147] -
LiCaTb5(BO3)6 -, - - 227 - [139] -

TbVO4 -, - - - 60 [145] -
Nd:TbVO4 -, - - 198 71 [146] -

CeAlO3 -, - - 270 ** 79.7 [151] -

3.3. NIR-MIR Region (λ > 1100 nm)

Above 1100 nm, a ferrimagnetic material yttrium iron garnet (YIG) crystal and its RE-substituted
compositions represent the established materials for the FDs, as they have been investigated since the
1960s [65,152]. The RE-substituted iron garnets possess very high Verdet constant [153–156] and low
saturation magnetization [157], which is the main reason for its wide utilization for low-power applications
in telecommunications, medical field or integrated magneto-optical devices [4]. Moreover, a high-grade
YIG ceramics has been very recently reported [158], possibly enabling fabrication of large-aperture YIG
elements in the near future.
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Recently, there have been a few reports on MIR paramagnetic materials as well. The main advantage of
using a paramagnetic material is the possibility of fine adjustment of the desired rotation angle by changing
the magnetic field applied on the magneto-optical element [129]. This can be done either by moving the
element to a stronger/weaker magnetic field (if a permanent magnetic system is used) or by changing
the input current to the electromagnet. The majority of materials used for the NIR wavelengths contain
Tb3+ ions (see the Table 2), which have strong absorption in the MIR, and, therefore, it is needed to search
for materials with different compositions. The fluorides CeF3, PrF3 and LiREF4 (RE = Dy, Ho or Er) [59]
have several transparency windows in the MIR; nevertheless, their magneto-optical characteristics in this
region are unknown. The only exception is the CeF3 crystal, for which the Verdet constant was reported
up to 1950 nm in Ref. [46]. The CeAlO3 material [151] is also transparent up to ∼2500 nm and its Verdet
constant is about twice as high as the one of CeF3 at the 633 and 1064 nm wavelengths. Apart from these
cerium-based materials, Verdet constant investigations of (DyXY0.95−XLa0.05)2O3 (with variable doping
X = 0.7, 0.8 and 0.9) ceramics [129,130], EuF2 crystal [42,159] and Dy2O3 ceramics [48] were recently
reported. Although further optimization of the fabrication process is needed, all of them exhibit very
promising magneto-optical characteristics for their future utilization in high-power MIR FDs. All of these
materials, however, have the Verdet constant in the range of ∼15 rad/(Tm), which implies a requirement
for a relatively strong magnetic field >2 T (for a ∼20–30 mm long MOE to achieve the desired 45-degree
polarization rotation in a Faraday isolator). Although some permanent magnets with the needed peak
magnetic field magnitudes were already reported [24,26], it is still challenging to construct such magnets
with the desired field distributed homogeneously over the whole MOE. Searching for other paramagnetic
materials with higher magneto-optical characteristics in MIR is therefore still very topical.

Table 3. A brief overview of magneto-active materials for the NIR-MIR FDs (λ > 1100 nm). The Verdet
constant dispersion V(λ) is given by the single-transition model in Equation (13) with the specified
(F, λ0)-parameters; the G-parameter is equal to 0 for all materials. The listed V-values are the absolute
values of the Verdet constant, specified in rad/(Tm). For the YIG crystal, the saturated Verdet constant is
specified in rad/m. ◦ A function different from the model in Equation (13) for the Verdet constant dispersion
may be found in the listed reference.

Material F [rad/(Tm)] λ0 [nm] |V | at 1550 nm |V | at 1940 nm Reference Additional References

YIG - - 304 - [158] [65,152–157]
EuF2 231.5 436 17.6 12.3 [159] [42]

(Dy0.9Y0.05La0.05)2O3 - - - 13.8 [129] [130]
Dy2O3 - ◦ - 28.9 19.2 [48] -
CeF3 260.8 375.1 16.2 ∼8 [46] [60,61,134,135]

4. Conclusions

In this review, we deal with the development of magneto-active materials for Faraday-effect-based
magneto-optical devices for high-power lasers. The major task to be solved in the area of high-power FDs
is the compensation and reduction of the absorption-induced thermal effects which seriously deteriorate
the performance of these devices. In the Section 1.3, we mention several methods on how to mitigate the
thermal effects:

• Optical layout for compensation of the thermally-induced polarization and wavefront distortions
• Enhancement of the applied magnetic field
• Design of optimal geometry and cooling of the magneto-optical elements
• Development of new magneto-active materials
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The desirable properties of a magneto-active material for high-power FD are: possession of high
Verdet constant and transparency, high thermal conductivity and low value of thermo-optical constants Q
and P (evaluating the thermally induced polarization and wavefront distortions).

In the following Section 2, we describe an advanced method for characterization of the Verdet constant
dependence on wavelength and temperature. The presented experimental setup is an easily-adjustable
and robust tool for the measurement of the Faraday rotation angle induced in the magneto-active material.
The Verdet constant is calculated based on the knowledge of the magnetic field and the material sample
parameters. Due to the utilization of a broadband source, the wavelength dependence of the Verdet
constant may be studied at a higher level of detail. For the purpose of this analysis, a general model
function for describing the Verdet constant as a function of wavelength and temperature is introduced.

In the final part Section 3, we review the room-temperature investigations of the Verdet constant
for several magneto-active materials developed for the high-power FDs. The overview covers several
materials, which could be used for the UV, VIS, NIR and MIR wavelengths. For the UV wavelengths,
the fluorides CeF3, PrF3 and LiREF4 (RE = Tb, Dy, Ho, Er and Yb) represent promising materials for the
high-power FDs: they possess high Verdet constant and local windows of high transparency. Nevertheless,
reports on the construction of UV FDs based on these materials are still rare. The by far most intensively
studied magneto-active materials for FDs are those for the VIS-NIR region 400 < λ < 1100 nm. These
studies often aim at achieving the higher value of the Verdet constant as compared with the TGG
crystal—an established material for this wavelength range, which, however, has insufficient properties
to be employed in the great number of the newly developed high-power laser systems. Most of these
new successors of the TGG crystal are also Tb-based, having a higher concentration of the Tb3+ ions.
The other commonly investigated materials contain Ce, Pr, Ho or Dy ions, in a combination with the Tb
ions. From these, we may mention TAG, TSAG, RE:TGG, or RE:TAG, all of them having approximately a
few tenths of percent higher Verdet constant than the TGG. The record holds the Tb2O3 ceramics with more
than three times higher Verdet constant than that of the TGG crystal. Reports of Tb-less compounds are
less common, but, among those, materials such as Dy2O3, Ho2O3, CeF3, CeAlO3 or NaCe(MoO4)2 show
promising magneto-optical characteristics. The extended FOM parameters in Equations (2)–(4), which
offer a much more realistic comparison of these materials under high-power operation, are, unfortunately,
for the vast majority of these materials unknown. It is, therefore, one of the main tasks for future research
to evaluate the performance of these promising materials under the thermal loading by a high-power
laser. A comparison of some of these materials was already reported by the authors of [16,38] based on
a maximum achievable power in a Faraday isolator ensuring a 30 dB isolation ratio.

The last spectral region reviewed is the NIR-MIR region (λ > 1100 nm), for which the ferrimagnetic
YIG crystal represents the most commonly used material for low-power laser applications. Most recently,
magneto-optical characteristics of a few paramagnetic materials were reported, i.e., Dy-based sesquioxide
ceramics or EuF2 crystal, which could be used as an alternative to the YIG. However, due to the low values
of the Verdet constant, their utilization in a FD would demand relatively strong magnetic fields >2 T for
achieving standard rotation angles. Therefore, it is crucial to continue the investigation of new materials
with higher magneto-optical activity.
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