

HiLASE Centre is pleased to invite you to attend the seminar:

Development of a cryogenic Tm:Y₂O₃ multi-pass amplifier in nanosecond regime Fangxin Yue

HiLASE Centre, Institute of Physics, Czech Academy of Sciences

Emerging applications, such as laser induced damaged threshold measurement, polymer material processing, debris removal from space, pump source for Mid-Infrared (Mid-IR) lasers, including ultrafast optical parametric oscillators based on non-oxide nonlinear crystals, etc., require compact high average and peak power (HAPP) laser sources emitting at the two-micron spectral range. To achieve two-micron lasing, Tm-doped Y_2O_3 transparent ceramics are promising active media for diode-pumped all solid-state lasers. The advantage of Tm ion is its efficient absorption around 800 nm, which can be pumped by commercial available AlGaAs laser. It also has two-to-one cross-relaxation process, which leads to much higher slope efficiency than the quantum defect limited value. The host material Y_2O_3 has very high thermal conductivity, a relatively low maximum phonon energy and sufficiently broad emission when doped with rare earth ions. However, this material suffers from reabsorption losses due to quasi-three level system at room temperature and other parasitic process such as exited state absorption (ESA) and energy-transfer upconversion (ETU), which limit the power scaling and beam quality of laser. To mitigate these issues, the active medium was cooled .

In this seminar, our preliminary studies on the structural and spectroscopic properties of $Tm:Y_2O_3$ transparent ceramic and its laser potentialities at cryogenic temperature will be presented.

When: Monday, **1/10/2019 at 14:00** Where: Seminar room, HiLASE Centre

